Welkom!


Welkom op mijn blogsite. Ik ben Miek en wil weten wat u van mijn blogs vindt. Dat kunt u doen door op een of meerdere labels te klikken ("Leuk", "Dit is Miek." of "(Freaking) mooi geschreven").

Heeft u een vraag, wilt u reageren, heeft u een mening of is er iets anders dat u per se kwijt wilt? Dat kan door bij een van mijn berichten een reactie te plaatsen. Ik zal zo snel mogelijk reageren.

Ik hoop dat u mijn berichten met veel plezier leest en dat u vaker terugkomt.

woensdag 2 mei 2012

De schoonheid van wiskunde

In de blog over de Pythagorasboom werkte ik met vierkanten en driehoeken.
Een vierkant is een voorbeeld van een regelmatige veelhoek. Dat is, zoals de naam al doet vermoeden, een veelhoek die regelmatig is. Regelmatig wil zeggen dat alle zijden even lang zijn en alle hoeken even groot. Een rechthoek is dus geen regelmatige veelhoek, omdat niet alle zijden even lang zijn.
Je hebt oneindig veel regelmatige veelhoeken, hoewel men in het dagelijks leven niet verder gaat dan de achthoek. Hoe groter het aantal hoeken, hoe meer het figuur op een cirkel gaat lijken.
Deze regelmatige veelhoeken hebben een aantal mooie eigenschappen. Zo is de bissectrice, ook wel deellijn genoemd, gelijk aan de zwaartelijn en hoogtelijn. Een bissectrice verdeelt een hoek in twee gelijke delen, een zwaartelijn verdeelt een figuur in twee even grote delen (die delen zijn dus even zwaar, vandaar de naam). Met al deze speciale lijnen kun je leuke dingen doen; denk aan het zwaartepunt of middelpunt vinden en daarmee de in- of omgeschreven cirkel tekenen. Dat laat ik even buiten beschouwing.

Met het programma GeoGebra was ik aan het spelen met deze regelmatige veelhoeken. Ik ben benieuwd of er een verband zit tussen de grote regelmatige veelhoek en de kleineren die de grote omsluiten. Het eerste figuur doet niet helemaal mee, omdat er ruimte tussen zit. Daar vraag ik mij af of je er een 3D-figuur van kunt bouwen, als ik het figuur zou vergroten. En heb ik dan een nieuw Archimedis figuur ontdekt of gaat het een andere naam krijgen of... *ratelt in Wiskunde-taal verder door*



Geen opmerkingen:

Een reactie posten